Fish with Melanoma – Our Enduring Environmental Legacy

We’ve all heard the horror stories. Melanoma is one of the most dangerous kinds of skin cancer, killing around 50,000 people worldwide every year. If caught early enough, it can be cured, but once it invades past the skin, it’s deadly. On the advice of doctors, we try to protect ourselves, donning floppy hats and coat upon coat of SPF 50 sunblock. We pick over our bodies in the mirror regularly, looking for dark, irregularly-shaped spots. The recent rise in the incidence of skin cancer, though, is our own fault. It is the result of our environmental hubris, a combination of a chemically-depleted ozone layer and our pathological obsession with a tanned physical appearance. Now, we’re becoming increasingly aware that our choices don’t just impact our own species. The rest of life has to deal with our poor decisions, and studies are just now determining the wide-ranging consequences of our actions.

Histology of healthy skin (left) and melanoma-

diseased skin (right) from coral trout

Unable to slather on sunscreen, the creatures on our planet are much more limited in their ability to deal with the sun’s radiation. Some, like the red seabream, are able to tan much like we do, increasing the melanin content in their skin to defend against damaging rays. But most animals are not so lucky, and are ill-equipped to deal with drastic changes in UV radiation. Yet drastic changes in UV radiation are exactly what occurred in the late 20th century, when chemicals we used as refrigerants and in aerosol sprays quickly depleted one of the most UV-protecting molecules, ozone, from our atmosphere. From 1972 to 1992, places like Australia saw a 20% increase in UV radiation levels, and colder areas like Antarctica saw ozone decreases of 50 percent or more, creating large ozone holes which allow more than double the normal level of UV radiation to pass through.

In the late 1970s, scientists began to realize that certain chemicals we were producing, called chlorofluorocarbons, or CFCs, were making their way into the stratosphere. These chemicals release chlorine atoms which, when combined with cold temperatures, begin a destructive chain reaction that turns UV-blocking ozone into oxygen. By 1987, there was so little protective ozone in the stratosphere over Antarctica that global lawmakers decided CFCs were too dangerous to go unchecked. They established the Montreal Protocol, which set strict limits on the use of CFCs. In the 25 years since, the ozone layer has rebounded some, but it is still 50 to 70 years away from returning to pre-1980s levels. Now, the ozone layer is under a new threat: climate change. Scientists predict that rising carbon dioxide levels will lead to more ozone holes, as carbon dioxide and other greenhouse gasses trap heat at the surface, chilling the stratosphere, and allowing atmospheric chlorine atoms to wreak havoc.

We are only now beginning to fully document the consequences of ozone depletion. In people, the loss of ozone at the end of the 20th century was directly connected to a 16 to 60 percent increase in the incidence of skin cancer. But while we carefully documented the effects on our own species, little research has looked for health effects on other animals. Now, Australian scientists have found an entire population of fish plagued with the deadliest form of skin cancer: melanoma.

The team of researchers from Newcastle University began looking for skin cancer in the commercially and culturally important species of coral trout off Australia in 2010 when a different team of scientists studying sharks first noticed lesions. Because these other scientists from The Australian Institute of Marine Sciences were catching trout to study predator-prey dynamics, Michael Sweet and his colleagues were able to screen over a hundred coral trout (Plectropomus leopardus) for melanoma between August 2010 and February 2012. They examined lesions histologically, to determine the exact type and severity of the cancer. Lastly, they tested lesions for bacteria and viruses, to rule out a microbial cause.

A healthy coral trout (top) as compared to

trout with melanoma

A whopping 15% of the fish surveyed had melanoma. “Studying disease in wild fish populations is very time-consuming and costly so it’s hard to say how long the disease has been around,” explains lead author Michael Sweet. “What we do know is that it is now widespread in the coral trout population. We found evidence of cancer in the common coral trout, the bar-cheeked coral trout, and the blue spotted coral trout.”

While 15% sounds high, Sweet and his colleagues believe it’s only a minimum estimate. “Once the cancer spreads further you would expect the fish to become quite sick, becoming less active and possibly feeding less, hence less likely to be caught. This suggests the actual percentage affected by the cancer is likely to be higher than observed in this study.”

This isn’t the first melanoma to be found in fish, as individual cases have been identified in a wide variety of species, from catfish to nurse sharks. Never before, however, has melanoma been found population-wide. “To the best of our knowledge, cancer of any sort has never been shown in a wild marine fish population before, making this a first for science,” said Sweet

While it is a first, Sweet and his colleagues don’t think coral trout are unique. “We would not be surprised to find [melanoma] in other species as well,” he said, “including some of the smaller reef species.” So far, skin cancer in fish has likely been overlooked due to the high cost of evaluating fish for disease as well as the low likelihood of sick and weakened fish landing in fishermen’s or scientists’ hands.

Extensive laboratory analyses ruled out microbial agents as the driver of the disease, and since the fish were caught far from shore in a marine protected area, it’s unlikely that pollution factored in, either. The samples were also directly compared to UV-induced melanomas in laboratory fish, which are used as a model for human disease; the ones in coral trout looked identical to the lab-created cancers. “This combination of evidence leads us to suspect UV as the casual agent.”

If UV is the cause, then it’s really our fault. “The occurrence of this disease in today’s day and age and not before can be linked to the changes we are experiencing in our climate and the ozone hole,” explained Sweet. “It is highly likely there will be higher prevalence around areas which have these ‘ozone holes’.” While the Montreal Protocol has helped reverse some of the worst damage, Sweet is careful to note that we’re not out of the woods yet. “An increase in smaller ozone holes (other than the two large ones of the Arctic and the Antarctic) is thought to be occurring, and this has been related by other researchers to be due to climate change.”

The overall effect of skin cancer in fish populations could be devastating. In laboratory fish, melanoma cuts the lifespan of Xiphophorus species from four years to only six months, and makes them more susceptible to small changes in their environment like fluctuations in temperature. “It is unclear whether future changes in the ocean environment or climate will similarly exacerbate the effect of melanomas in wild P. leopardus populations,” write the authors, “but clearly further research is urgently needed to understand the distribution, prevalence, ecological and fisheries significance of this syndrome.”

Since lawmakers are hesitant to restrict greenhouse gasses and other pollutants, we’re stuck with whatever happens, for now – especially, as Sweet notes, when it comes to disease. “Without addressing the underlying issues, sadly, there is likely no feasible or practical cure for skin cancer in wild fish populations.” If melanoma is found in other species, too, the consequences will only magnify.

With little natural protection against UV rays, fish and most other species are at our mercy when it comes to radiation-induced disease. Skin cancer only adds to a growing list of pathological consequences to our poor ecological choices – a list which includes devastating diseases like chytridiomycosis and avian malaria. Until we change the way we treat the world around us, that list will continue to grow, while the abundance and vitality of our planet’s biodiversity shrinks.

 
Citation: “Evidence of melanoma in wild marine fish populations.” M J Sweet, N Kirkham, M Bendall, L Currey, J C Bythell, M Heupel. PLOS ONE. August 2012. DOI: 10.1371/journal.pone.0041989.g005

Histological sections from the paper; photos of coral trout by Michelle Heupel

Playing in Tide Pools | Scientist in vivo

Here at Science Sushi, I often talk about the great work being done by other scientists, but I rarely turn the focus around and talk about my life as a scientist. This is a shame because I really love my job. So, starting today I’m going to try and take you out in the fiels and into the lab in a series I’ve titled “Scientist in vivo“. I hope that, through this series, you’ll get to learn what it’s like to be a scientist, what I actually do for a living and what makes my job so rewarding. Enjoy!

As a scientist, one of the most important parts of my job is outreach. I consider this blog and other outreach activities as an integral part of my profession. So every year, I wrangle grad students from the Ecology, Evolution and Conservation Biology (EECB) Specialization at the University of Hawaii to help a local elementary school teach their students about the ecology of tide pools. The partnership between EECB and Mililani-Mauka Elementary school is one of those rare gems in outreach where both sides get a tremendous amount out of the relationship. The school gets trained scientific experts that fascinate and amaze the kids with tales of slimy defenses and odd partnerships between crabs and anemones. In turn, the graduate students get to take a day off, get out of the lab, and act like kids playing in tide pools. Sometimes, I think the overworked grad students are more excited to catch critters than the kids!

What can you find in a tide pool on the coast of Oahu? Well, let’s find out…

Hexabranchus saguineus – Spanish Dancer

 

 

Kingdom: Animalia

Phylum: Mollusca

Class: Gastropoda

Family: Hexabranchidae

Genus: Hexabranchus

Species: H. sanguineus

One of my favorite finds was a Spanish Dancer nudibranch – a name that aptly fits the beautiful undulating motion of this colorful animal while it swims which looks like the swirling of a flamenco dancer’s skirt. It’s the largest species of nudibranch in Hawaii, and can get over a foot long!

The term “nudibranch” means “nude/naked gills,” and refers to the frilly, external gills found in these species (they look almost like feathers sticking out of the dancer’s back). The scientific name for this species, Hexabranchus sanguineus, refers specifically to the number of gills (six) and to its blood-like red coloring. Nudibranchs are often brilliantly colored and found in many sizes and shapes, which may serve to warn predators as many species are toxic. Unlike other sea critters, toxic nudibranchs don’t make their own defenses – they steal them from species they eat, like sponges and Portuguese man-of-war.

Dardanus gemmatus – Jeweled Anemone Crab

 

 

Kingdom: Animalia

Phylum: Arthropoda

Class: Malacostraca

Order: Decapoda

Family: Diogenidae

Genus: Dardanus

Species: D. gemmatus

This beautiful little crab is a specialized kind of hermit crab known as an anemone crab. The frilly bits on its shell aren’t just for show – they’re a kind of sea anemone, Calliactis polypus. For the crab, the anemones provide protection. Their painful stinging cells make the crab’s predators think twice about what they snack on. Those pretty pink strands are actually specialized stinging threads called acontia which help protect both the anemone and the crab. In turn, the crab provides the anemones with movement, thus granting them access to better food resources. This kind of you-pat-my-back-I’ll-pat-yours relationship is what is known in as symbiosis or mututalism.

Dolabella auricularia – Wedge or Eared Sea Hare

 

 

 

Kingdom: Animalia

Phylum: Mollusca

Class: Gastropoda

Family: Aplysiidae

Genus: Dolabella

Species: D. auricularia

Ok, so you can’t really see the sea hare in these pictures. But you can see what it produces when it’s scared – a thick batch of bright purple slime! Sea hares – also known as sea slugs – are relatives of snails and other shelled animals, but like slugs on land, they haven’t had a shell for millions of years, thus making them more vulnerable to predators. But the sea hares aren’t defenseless, as you can see from the goo in the pictures. When they feel threatened, they are able to produce large amounts of a thick slime which confuses their would-be predator, allowing the slug to slither away unharmed. The purple color for the slime from the red algae the hares feed on.

Echidna nebulosa – Snowflake Moray

 

 

Kingdom: Animalia

Phylum: Chordata

Class: Actinopterygii

Order: Anguilliformes

Family: Muraenidae

Genus: Echidna

Species: E. nebulosa

Tide pools are important nursery habitats, even for active predators like this snowflake moray. These scary hunters can grow up to 3 feet long and pack one heck of a bite, but this young eel is as vulnurable to predators as other small fish. The tide pools provide him and other young fish a place free of large predators where they can grow large enough to try and make it on their own on the exposed reefs. Snowflake morays don’t often eat fish, though they will if the opportunity arises. Their teeth are flatter than other species of eel, and are more suited to crushing shelled prey items like as shrimps, crabs, and sea urchins.

Octopus cyanea – Day Octopus

 

 

Kingdom: Animalia

Phylum: Mollusca

Class: Cephalopoda

Order: Octopoda

Family: Octopodidae

Genus: Octopus

Species: O. cyanea

By far one of the kid’s favorite finds was this small day octopus. Popular here in Hawaii as a food item (known as tako), day octopus are heavily fished. As daytime hunters, day octupus have incredible camouflage abilities. Let me point out that the two photos above are of the same octopus – those color differences are just a couple of the wide variety of elaborate color patterns and skin textures that the octopus displayed in our short time with it. Octopus have complex brains with a highly developed nervous system capable of changing their skin almost instantly as they move over different substrates. Roger Hanlon, an octopus biologist, once recorded a single day octopus changing patterns 1,000 times over a 7 hour period!

Scorpaenopsis diabolus – Devil Scorpionfish

 

 

Kingdom: Animalia

Phylum: Chordata

Class: Actinopterygii

Order: Scorpaeniformes

Family: Scorpaenidae

Genus: Scorpaenopsis

Species: S. diabolus

Last but not least, however, was by far my favorite catch of the week – this small devil scorpionfish, now named Stumpy. You see, this guy is one of the species that I study. I’m investigating the toxins in the entire order to get a better understanding of how toxins evolved in fish, and this little cutie is one of the many fishes whose spines possess a potent and painful sting. It’s easy to see why this particular species might be mistaken for a rock covered in algae. Because of exceptional camouflage, scorpionfish like this one are often unnoticed by tide pool goers, swimmers and divers until it’s too late and they find out the hard way exactly how strong the toxins they produce are. My goal is to better understand why other member of the order – groupers, for example – aren’t as toxic, even though they possess the ability to produce a similar protein toxin. Do they not express it? Or is the toxin itself altered to be less painful? Given that the toxins have strong effects on our bodies, it’s possible they may provide clues to new drugs or insights into how our cells work.

Stumpy here has come back with me so I can study his toxins as a part of my dissertation research. He currently resides in a tank at my house, where he has been eating like a glutton all week. The speed with which these ambush predators gulp a fish right out of the water never ceases to amaze me. Other cool fact: he glows orange in UV light. Yeah. Orange. How neat is that? I study the coolest animals EVER.

Check out more photos from this year’s tide walks on Facebook!